University at Buffalo GIFTED MATH PROGRAM

Course V Curriculum

Fall Semester

Course Number: MTH 141

Course Title: College Calculus I

Credit Hours: 4.0

Textbook: Stewart, Calculus, Early Transcendentals: MTH141, 142 (8th edition,

UB custom), Cengage Learning

Catalogue

Description: This is the beginning of a 3-semester sequence in calculus for

students of mathematics, natural sciences and engineering. Covers

differentiation and integration with applications.

Prerequisite: NYS Regents Algebra II or MTH 115

Syllabus: MTH 141 covers through Chapter 5 of the text.

Week	Section	Topics
1	2.1	Tangent and Velocity Problems
1	2.2	Limit of a Function
1	2.3	Calculating Limits Using Limit Laws
2	2.4	Precise Definition of a Limit, Infinite Limits
2	2.5	Continuity
3	2.6	Limits at Infinity; Horizontal Asymptotes
3	2.7	Tangents, Velocities, and Other Rates of Change
4	2.8	Derivatives
4	2.9	The Derivative as a Function
4	3.1i	Derivatives of Polynomial Functions
5	1.5	Exponential Functions
5	1.6	Inverse Functions and Logarithms, Inverse Trigonometric Functions
5	3.1ii	Derivatives of Exponential Functions
5	3.2	The Product and Quotient Rules
6	3.4	Derivatives of Trigonometric Functions
6	3.5	The Chain Rule
6	3.6	Implicit Differentiation, Derivatives of Inverse Trigonometric Functions
7	3.7	Higher Derivatives
7	3.8	Derivatives of Logarithmic Functions
option	3.9	Hyperbolic Functions
option	3.10	Related Rates
7	3.11	Linear Approximation and Differentials
8	4.1	Maximum and Minimum Values
8	4.2	The Mean Value Theorem
8	4.3	How Derivatives Affect the Shape of a Graph
9	4.4	Indeterminate Forms and L'Hopital's Rule
9	4.5	Summary of Curve Sketching
option	4.6	Graphing with Calculus and Calculators
9	4.7	Optimization Problems
option	4.8	Applications to Business and Economics
option	4.9	Newton's Method
10	4.10	Antiderivatives
10	5.1	Areas and Distances
11	5.2	The Definite Integral
11	5.3	The Fundamental Theorem of Calculus
12	5.4	Indefinite Integrals and the Net Change Theorem
12	5.5	The Substitution Rule
option	5.6	The Logarithm Defined as an Integral

University at Buffalo GIFTED MATH PROGRAM

Course V Curriculum

Spring Semester

Course Number: MTH 142

Course Title: College Calculus 2

Credit Hours: 4.0

Textbook: Stewart, Calculus, Early Transcendentals: MTH141, 142 (8th edition,

UB custom), Cengage Learning

Catalogue

Description: Differentiation and integration of transcendental functions; infinite sequences;

series and power series; integration methods; additional topics in analytic

geometry.

Prerequisite: MTH 141 with recommended grade of "C" or higher.

Syllabus: MTH 142 covers (parts of) Chapter 5 through 11 of the text.

Week	Section	Topics
1	5.5	The Substitution Rule
1	6.1	Areas Between Curves
2	6.2	Volumes
2	6.3	Volumes by Cylindrical Shells
option	6.4	Work
2	6.5	Average Value of a Function
3.	7.1	Integration by Parts
3	7.2	Trigonometric Integrals
4	7.3	Trigonometric Substitution
4	7.4	Integration of Rational Functions by Partial Fractions
5	7.5	Strategy for Integration
6	7.7	Approximate Integration
6	7.8	Improper Integrals
6	8.1	Arc Length
7	8.2	Area of a Surface of Revolution
option	8.3	Applications to Physics and Engineering
option	8.4	Applications to Economics and Biology
option	8.5	Probability
7	9.4	Exponential Growth and Decay
8	10.1	Curves Defined by Parametric Equations
8	10.2	Calculus with Parametric Curves
8	11.1	Sequences
9	11.2	Series
9	11.3	The Integral Test and Estimates of Sums
9	11.4	Comparison Tests
10	11.5	Alternating Series
10	11.6	Absolute Convergence & the Ratio Test
10	11.7	Strategy for Testing Series
10	11.8	Power Series
11	11.9	Representation of Functions as Power Series
11	11.10	Taylor and McLaurin Series
11	11.11	The Binomial Series
11	11.12	Applications of Taylor Polynomials
12	10.3	Polar Coordinates
12	10.4	Areas and Lengths in Polar Coordinates
option	10.5	Conic Sections
option	10.6	Conic Sections in Polar Coordinates